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I.  Executive Summary 
 

 This report serves as a summary of our efforts to date in the execution of the water quality 

monitoring project for the FKNMS.  Since initiation we have added 4 sampling sites and adjusted 

6 others to increase cover in the Sanctuary Preservation Areas and Ecological Reserves.  We 

have received 21 requests for data by outside researchers working in the FKNMS of which one 

has resulted in a master's thesis.  Two scientific manuscripts have been submitted for publication: 

one is a book chapter in Linkages Between Ecosystems: the South Florida Hydroscape, St. Lucie 

Press; the other is in special issue of Estuarine, Coastal and Shelf Science on visualization in 

coastal marine science.  Two other manuscripts are being prepared; one in conjunction with the 

FKNMS seagrass monitoring program.  We maintain a website where data from the FKNMS is 

integrated with the other parts of the SERC water quality network (Florida Bay, Whitewater Bay, 

Biscayne Bay, Ten Thousand Islands, and SW Florida Shelf) and displayed as downloadable 

contour maps - http://www.fiu.edu/~serc/jrpp/wqmn/datamaps/datamaps.html 

 The period of record for this report is Mar. 1995 - Oct. 1999 and includes data from 17 

quarterly sampling events at 154 stations within the FKNMS including the Dry Tortugas 

National Park.  Field parameters at each station include salinity, temperature, dissolved oxygen 

(DO), turbidity, relative fluorescence, and light attenuation (Kd).  Water chemistry variables 

measured at each station include the dissolved nutrients nitrate (NO3
-), nitrite (NO2

-), ammonium 

(NH4
+), dissolved inorganic nitrogen (DIN), and soluble reactive phosphate (SRP as PO4

3-).  

Total unfiltered concentrations of organic nitrogen (TON), organic carbon (TOC), phosphorus 

(TP), and silicate (Si(OH)4) were also measured.  The monitored biological parameters included 

chlorophyll a (Chl a) and alkaline phosphatase activity (APA).   

 Grouping stations by depth showed that temperature, DO, TOC, and TON were generally 

higher at the surface while salinity, NO3
-, NO2

-, NH4
+, TP, and turbidity were higher in bottom 

waters.  This slight stratification is indicative of a weak pycnocline which is maintained by 

freshwater inputs and solar heating at the surface.  Elevated nutrients in the bottom waters is due 

to benthic flux and some upwelling.  Stations grouped by to geographical region showed that the 

Tortugas and the Upper Keys had lower nutrient concentrations than the Middle Keys or Lower 

Keys.  In the Lower Keys DIN was elevated in the Backcountry.  TP concentrations in the Lower 
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Keys transects decreased with distance offshore but increased along transects in the Upper Keys, 

mostly because of low concentrations alongshore.  The Sluiceway had lowest salinity and highest 

TOC, TON, and Si(OH)4 concentrations.  The north Marquesas area exhibited highest 

phytoplankton biomass for any segment of the FKNMS.  Declining inshore to offshore trends 

were observed for NO3
-, NH4

+, Si(OH)4, TOC, TON, and turbidity for all oceanside transects.  

Stations grouped by shore type showed that those stations situated along channels/passes 

possessed higher nutrient concentrations, phytoplankton biomass, and turbidity than those 

stations off land.  These differences were very small but it is not known if they are biologically 

important.  However, the fact that the benthic communities are different between these two 

habitats indicates that there may be some long term effects.  

 Probably the most interesting result of our data analysis was the elucidation of temporal 

trends in TP for much of the FKNMS.  Trend analysis showed statistically significant increases 

in TP for the Tortugas, Marquesas, Lower Keys, and portions of the Middle and Upper Keys.  

These trends were remarkably linear and show little seasonality.  The increases in TP were 

system wide and occurred outside the FKNMS on the SW Shelf as well.  Rates of increase 

ranged from 0.01-0.07 µM yr-1 which was significant considering initial concentrations to be 

~0.1-0.2 µM.  No trends in TP were observed in Florida Bay or in those FKNMS sites most 

influenced by transport of Florida Bay waters.  The effect of increased TP on the phytoplankton 

biomass has not been shown to be significant; i.e. no concurrent increases in Chl a were 

observed.   

 At this time we can only speculate as to the cause of these increases in TP concentrations but 

it is clear that the increases are driven by regional circulation patterns arising from the Loop  and 

Florida Currents.  We have begun the process of gathering information as to potential TP sources 

and transport mechanisms. 
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II.   Project Background 
 

 The Florida Keys are a archipelago of sub-tropical islands of Pleistocene origin which extend 

in a NE to SW direction from Miami to Key West and out to the Dry Tortugas (Fig. 1).  In 1990, 

President Bush signed into law the Florida Keys National Sanctuary and Protection Act 

(HR5909) which designated a boundary encompassing >2,800 square nautical miles of islands, 

coastal waters, and coral reef tract as the Florida Keys National Marine Sanctuary (FKNMS).  

The Comprehensive Management Plan (NOAA 1995) required the FKNMS to have a Water 

Quality Protection Plan (WQPP) thereafter developed by EPA and the State of Florida (EPA 

1995).  The contract for the water quality monitoring component of the WQPP was subsequently 

awarded to the Southeast Environmental Research Program at Florida International University 

and the field sampling program began in March 1995.   

 The waters of the FKNMS are characterized by complex water circulation patterns over both 

spatial and temporal scales with much of this variability due to seasonal influence in regional 

circulation regimes.  The FKNMS is directly influenced by the Florida Current, the Gulf of 

Mexico Loop Current, inshore currents of the SW Florida Shelf (Shelf), discharge from the 

Everglades through the Shark River Slough, and by tidal exchange with both Florida Bay and 

Biscayne Bay.  Advection from these external sources has significant effects on the physical, 

chemical, and biological composition of waters within the FKNMS, as may internal nutrient 

loading and freshwater runoff from the Keys themselves.  Water quality of the FKNMS may be 

directly affected both by external nutrient transport and internal nutrient loading sources.  

Therefore, the geographical boundary of the FKNMS must not be thought of as enclosing a 

distinct ecosystem but rather as being one of political/regulatory definition.  

 Ongoing quarterly sampling of >200 stations in the FKNMS and Shelf, as well as monthly 

sampling of 100 stations in Florida Bay, Biscayne Bay, and the mangrove estuaries of the SW 

coast, has provided us with a unique opportunity to explore the spatial component of water 

quality variability.  By stratifying the sampling stations according to depth, regional geography, 

distance from shore, proximity to tidal passes, and influence of Shelf waters we report some 

preliminary conclusions as to the relative importance of external vs. internal factors on the 

ambient water quality within the FKNMS.   
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III.  Methods 
 

Site Characteristics and Sampling Design 

 A spatial framework for FKNMS water quality management was proposed on the basis of 

geographical variation of regional circulation (Klein and Orlando, 1994).  The final 

implementation plan (EPA, 1995) partitioned the FKNMS into 9 segments which was collapsed 

to 7 for routine sampling (Fig. 1).  Station locations were developed using a stratified random 

design along onshore/offshore transects in Seg. 5, 7, and 9 or within EMAP grid cells in Seg. 1, 

2, 4, and 6.   

 Segment 1 (Tortugas) includes the Dry Tortugas National Park and surrounding waters and is 

most influenced by the Loop Current and Dry Tortugas Gyre.  Segment 2 (Marquesas) includes 

the Marquesas Keys and a shallow sandy area between the Marquesas and Tortugas called the 

Quicksands; Segment 4 (Backcountry) contains the shallow, hard-bottomed waters of the 

gulfside Lower Keys.  Segments 2 and 4 are both influenced by water moving south from the 

Shelf.  Segment 6 can be considered as part of western Florida Bay.  This area is referred to as 

the Sluiceway as it heavily influenced by transport from Florida Bay and Shark River Slough 

(Smith, 1994).  Segment 5 (Lower Keys), 7 (Middle Keys), and 9 (Upper Keys) include the 

inshore, Hawk Channel and reef tract of the Atlantic side of the Florida Keys.  The Lower Keys 

are most influenced by cyclonic gyres spun off of the Florida Current, the Middle Keys by 

exchange with Florida Bay, while the Upper Keys are influenced by the Florida Current frontal 

eddies and to a certain extent by exchange with Biscayne Bay.  All three oceanside segments are 

also influenced by wind and tidally driven lateral Hawk Channel transport (Pitts, 1997).   

 

Spatial Analysis 

 Stations were grouped four different ways for statistical analysis: by surface or bottom 

samples, surface by segment, surface by transect distance, and surface by shore type.  These 

groupings were subjectively defined using best available knowledge in an effort to provide 

information as to source, transport, and fate of water quality components.  For the first grouping, 
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stations were selected as being >3 m depth where both surface and bottom samples were 

collected and stratified by depth.  The second grouping included surface samples stratified by 

segment (Fig. 1) in accordance with the implementation plan (EPA, 1995).  The third grouping 

consisted of those surface stations situated on ocean-side transects being aggregated according to 

their distance from shore: Alongshore, Hawk Channel, or Reef Tract.  In addition, we initiated a 

transect of stations in the Tortugas off Loggerhead Key to serve as a reference.  Since sampling at 

these locations in the Tortugas were only recently set up to address this question, the data is more 

sparse.  Also there are only two “channel” stations in the Tortugas which makes the data more 

susceptible to outlier conditions. 

 One of the concerns of this program is to determine the contribution of water movement 

through the passes of the Keys to the water quality of the reef.  To this end we decided to 

characterize the last grouping of transects as to shore type: those that are adjacent to land off 

Biscayne National Park off Old Rhodes Key, Elliot Key and the Safety Valve (BISC), those that 

abut land in Key Largo, Middle, and Lower Keys (LAND),  and those transects which are aligned 

along an open channel or pass through the Keys (PASS).  These grouping strategies may be 

changed when enough data is collected (ca. 5-7 yr) to be analyzed using a statistically objective, 

multivariate approach as has been done previously for Florida Bay and Ten Thousand Islands 

(Boyer et al., 1997; Boyer and Jones, 1998). 

 Typical water quality variables are usually skewed to the left resulting in non-normal 

distributions.  Therefore it is more appropriate to use the median as the measure of central 

tendency.  Data distributions of selected water quality variables are reported as box-and-whiskers 

plots.  The box-and-whisker plot is a powerful statistic as it shows the median, range, the data 

distribution as well as serving as a graphical, nonparametric ANOVA.  The center horizontal line 

of the box is the median of the data, the top and bottom of the box are the 25th and 75th 

percentiles (quartiles), and the ends of the whiskers are the 5th and 95th percentiles.  The notch in 

the box is the 95% confidence interval of the median.  When notches between boxes do not 

overlap, the medians are considered significantly different.  Outliers (<5th and >95th percentiles) 

were excluded from the graphs to reduce visual compression.  Differences in variables were also 

tested between groups using the Wilcoxon Ranked Sign test (comparable to t-test) and among 

groups by the Kruskall-Wallace test (ANOVA) with significance set at P<0.05.   
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 In an effort to elucidate the contribution of external factors to the water quality of the 

FKNMS and to visualize gradients in water quality over the region, we combined data from other 

portions of our water quality monitoring network: Florida Bay, Biscayne Bay, Whitewater Bay, 

Ten Thousand Islands, and the Shelf (Fig. 1).  Data from these 153 additional stations was 

collected during the same month as the FKNMS surveys and analyzed by the SERC laboratory 

using similar methodology and quality control as previously described. 

 

Time Series Analysis 

 Data for the complete period of record were plotted as time series graphs (see separate Data 

Appendix) to illustrate any temporal trends that might have occurred.  Trends were quantified by 

simple regression with significance set at P<0.10.   

 

 

IV.  Results and Discussion 
 

Spatial Analysis 

 Summary statistics for all measured parameters split out by segment are shown in Table 2.  

This summary includes data from all sampling dates and stations for the period of record listed 

by median value (Median), minimum value (Min.), maximum value (Max.), and number of 

samples (n).  Typical water quality data is skewed to the low end which results in a non-normal 

distribution, therefore, it is more appropriate to use the median as the measure of central 

tendency.   

 Distinguishing internal from external sources of nutrients in the FKNMS is a difficult task.  

The finer discrimination of internal sources into natural and anthropogenic inputs is even more 

difficult but most important as anthropogenic inputs may be regulated and possibly controlled by 

management activities.  Advective transport of nutrients through the FKNMS was not measured 

by the existing fixed sampling plan.  However, nutrient distribution patterns may be compared to 

the regional circulation regimes in an effort to visualize the contribution of external sources and 

advective transport to internal water quality of the FKNMS.   
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 Circulation in coastal South Florida is dominated by regional currents such as the Loop 

Current, Florida Current, and Tortugas Gyre and by local transport via Hawk Channel and along-

shore Shelf movements (Klein and Orlando, 1994).  Regional currents may influence water 

quality over large areas by the advection of external surface water masses into and through the 

FKNMS (Lee et al., 1994) and by the intrusion of deep offshore ocean waters onto the reef tract 

as internal bores (Leichter et al., 1996).  Local currents become more important in the mixing and 

transport of freshwater and nutrients from terrestrial sources (Smith, 1994; Pitts, 1997).   

 Spatial patterns of salinity in coastal South Florida show these major sources of freshwater to 

have more than just local impacts (see salinity figures in Appendix 1).  In Biscayne Bay, 

freshwater is released through the canal system operated by SFWMD; the impact is clearly seen 

to affect northern Key Largo by causing a depression in median salinity coupled with high 

variability in alongshore sites.  Freshwater entering NE Florida Bay via overland flow from 

Taylor Slough and C-111 basin in ENP can be seen to mix in a SW direction. The extent of 

influence of freshwater from Florida Bay on alongshore salinity in the Keys is less than that of 

Biscayne Bay but it is more episodic.  Transport of low salinity water from Florida Bay does not 

affect the Middle Keys sites enough to depress the median salinity in this region but is 

manifested as increased variability.  On the west coast, the large influence of the Shark River 

Slough, which drains the bulk of the Everglades and exits through the Whitewater Bay - Ten 

Thousand Islands mangrove complex, is clearly seen as impacting the Shelf waters.  The mixing 

of Shelf waters with the Gulf of Mexico produces a salinity gradient in a SW direction which 

extends out to Key West.  This freshwater source does not seem to impact the Backcountry 

because of its shallow nature but instead follows a trajectory of entering western Florida Bay and 

exiting out through the channels in the Middle Keys (Smith, 1994).  This net transport of lower 

salinity water from mainland to reef in open channels through the Keys is observed more so as an 

increase in the range and variability of salinity than as a large depression in salinity.   

 In addition to surface currents there is evidence that internal tidal bores regularly impact the 

Key Largo reef tract (Leichter et al. 1996).  Internal bores are episodes of higher density, deep 

water intrusion onto the shallower shelf or reef tract.  Depending on their energy, internal tidal 

bores can promote stratification of the water column or cause complete vertical mixing as a 

breaking internal wave of sub-thermocline water.  To determine the extent of stratification we 
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calculated the difference between surface and bottom density, delta sigma-t (∆σt), where positive 

values denoted greater density of bottom water relative to the surface.  The resulting graph of ∆σt 

(Fig. 2), shows that the SW area of the Tortugas segment tends to experience the greatest 

frequency of stratification events.  The decreased temperature and increased salinity in bottom 

waters from intrusion of deeper denser oceanic waters to this region may also account for 

increases in NO3
-, TP, and SRP in these bottom waters as well.  For example, in April 1998 a 

mass of colder, nutrient laden water from the Gulf of Mexico moved up onto the Tortugas reefs 

and fueled a large benthic macroalgae bloom (J. Porter, personal comm.).  This event was 

observed throughout most of the eastern Gulf as far north as Pensacola.  At the two most SW 

stations, temperatures dropped ~4°C, NO3
- increased 3 orders of magnitude, SRP and Si(OH)4 

increased by a factor of 100, while TP, turbidity, and in vivo Chl a specific fluorescence 

(measured via CTD) all doubled.  As there was only a small increase in NH4
+ during this event 

we believe the general case of elevated NH4
+ and turbidity found in bottom waters throughout the 

FKNMS is most probably due to benthic flux and resuspension and not to subthermocline 

advection. 

 Surface Si(OH)4 concentrations exhibited a pattern similar to salinity.  The source of Si(OH)4 

in this geologic area of carbonate rock and sediments is from siliceous periphyton (diatoms) 

growing in the Shark River Slough, Taylor Slough, and C-111 basin watersheds.  Unlike the 

Mississippi River plume with Chl a concentrations of 76 µg l-1 (Nelson and Dortch 1996),  

phytoplankton biomass on the Shelf (1-2 µg l-1 Chl a) was not sufficient to account for the 

depletion of Si(OH)4 in this area.  Therefore, Si(OH)4 concentrations on the Shelf were rapidly 

depleted by mixing and by chemical precipitation (Moore et al., 1986) allowing Si(OH)4 to be 

used as a semi-conservative tracer of freshwater in this system (Ryther et al. 1967).  Unlike 

Florida Bay and the west coast, there was very little Si(OH)4 loading to southern Biscayne Bay, 

mostly because the source of freshwater to this system is from canals which drain agricultural 

and urban areas of Dade County.   

 In the Lower and Middle Keys, it is clear that the source of Si(OH)4 to the nearshore Atlantic 

waters is through the Sluiceway and Backcountry.  Si(OH)4 concentrations near the coast were 

elevated relative to the reef tract with much higher concentrations occurring in the Lower and 

Middle Keys than the Upper Keys (Fig. 5).  There is an interesting peak in Si(OH)4 concentration 
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in an area of the Sluiceway which is densely covered with the seagrass, Syringodium (Fourqurean 

et al., in press).  We are unsure as to the source but postulate that it may be due to benthic flux. 

 Visualization of spatial patterns of NO3
- concentration over South Florida waters provide an 

extended view of source gradients over the region (Appendix 1).  Biscayne Bay, Florida Bay, and 

the Shark River area of the west coast exhibited high NO3
- concentrations relative to the FKNMS 

and Shelf.  Elevated NO3
- in Biscayne Bay is the result of loading from both the canal drainage 

system and from inshore groundwater (Alleman et al., 1995; Meeder et al., 1997).  The source of 

NO3
- to Florida Bay is the Taylor Slough and C-111 basin (Boyer and Jones, 1999; Rudnick et 

al., 1999) while the Shark River Slough impacts the west coast mangrove rivers and out onto the 

Shelf.  The oceanside transects off Biscayne Bay in Seg. 9 exhibited the lowest NO3
- alongshore 

compared to the Middle and Lower Keys.  A similar pattern was observed in a previous transect 

survey from these areas (Szmant and Forrester, 1996).  They also showed an inshore elevation of 

NO3
- relative to Hawk Channel and the reef tract which is also demonstrated in our analysis.  

Interestingly, NO3
- concentrations in all stations in the Tortugas transect were similar to those of 

reef tract sites in the mainland Keys; there was no inshore elevation of NO3
- on the transect off 

uninhabited Loggerhead Key.   

 A distinct intensification of NO3
- occurs in the Backcountry region.  Part of this increase may 

due to a local sources of NO3
-, i.e. septic systems and stormwater runoff around Big Pine Key 

(Lapointe and Clark, 1992).  However, there is another area, the Snipe Keys, that exhibits high 

NO3
- which is uninhabited by man.  This rules out the premise of septic systems being the only 

source of NO3
- in this area.  It is important to note that the Backcountry area is very shallow 

(~0.5 m) and hydraulically isolated from the Shelf and Atlantic which results in its having a 

relatively long water residence time.  Elevated NO3
- concentrations may be partially due to 

simple evaporative concentration as is seen in salinity. 

 Dissolved NH4
+ concentrations were distributed in a similar manner as NO3

- with highest 

concentrations occurring in Florida Bay, the Ten Thousand Islands, and the Backcountry 

(Appendix 1).  NH4
+ concentrations were very low in Biscayne Bay because it is not a major 

component of loading from the canal drainage system.  NH4
+ also showed similarities with NO3

-  

in its spatial distribution, being lowest in the Upper Keys and highest inshore relative to offshore.  

There was no alongshore elevation of NH4
+ concentrations in the Tortugas where levels were 
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similar to those of reef tract sites in the mainland Keys.  That the least developed portion of the 

Upper Keys in Biscayne National Park and uninhabited Loggerhead Key (Tortugas) exhibited 

lowest NO3
- and NH4

+ concentrations is evidence of a local anthropogenic source for both of 

these variables along the ocean side of the Upper, Middle, and Lower Keys.  This pattern of 

decline implies an onshore source which is diluted with distance from land by low nutrient 

Atlantic Ocean waters.   

 Elevated DIN concentrations in the Backcountry, on the other hand, are not so easily 

explained.  We postulate that the high concentrations found there are due to a combination of 

anthropogenic loading, physical entrapment, and benthic N2 fixation.  The relative contribution 

of these potential sources is unknown.  Lapointe and Matzie (1996) have shown that stormwater 

and septic systems are responsible for increased DIN loading in and around Big Pine Key.  The 

effect of increased water residence time in DIN concentration is probably small.  Salinities in this 

area were only 1-2 ppt higher than local seawater which resulted in a concentration effect of only 

5-6%.  Benthic N2 fixation may potentially be very important in the N budget of the Backcountry.  

Measured rates of N2 fixation in a Thalassia bed in Biscayne Bay, having very similar physical 

and chemical conditions, were 540 µmol N m-2 d-1 (Capone and Taylor, 1980).  Without the plant 

community N demand, one day of N2 fixation has the potential to generate a water column 

concentration of >1 µM NH4
+ (0.5 m deep).  Much of this NH4

+ is probably nitrified and may 

help account for the elevated NO3
- concentrations observed in this area as well.  Clearly, N2 

fixation may be a significant component of the N budget in the Backcountry and that it may be a 

exported as DIN to the FKNMS in general. 

 Spatial patterns in TP in South Florida coastal waters were strongly driven by the west coast 

outputs (Appendix 1).  A declining gradient in TP extended from the inshore waters of 

Whitewater Bay - Ten Thousand Islands mangrove complex out onto the Shelf and Tortugas.  A 

declining gradient also extended from north central Florida Bay to the Middle Keys.  Brand 

(1997) has postulated that groundwater from a subterranean Miocene quartz sand channel, "the 

river of sand", containing high levels of phosphorus is the source of TP in this region.  However, 

no evidence of this source exists to date and the data from Florida Bay does not indicate a 

subterranean source either (Boyer and Jones unpublished data).  A very small TP gradient was 
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seen NE Florida Bay signifying that Taylor Slough and the C-111 basin contribute little TP to the 

system.  Finally, there was no evidence of a significant terrestrial source of TP to Biscayne Bay.   

 In the Keys, there was evidence of elevated TP in alongshore stations of the Middle and 

Lower Keys but the differences were very small.  The Upper Keys actually showed higher TP 

concentrations on the reef tract than inshore implying an offshore source.  Interestingly, the 

Tortugas area had higher TP concentrations than the Upper Keys as a result of Shelf water 

advection.   

 In South Florida coastal waters, very little of TP is found in the inorganic form (SRP - PO4
3-); 

most is organic P (TOP).  The distribution of SRP on the west coast and Shelf was similar to that 

of TP with the general gradient from the west coast to Tortugas remaining.  However, the SRP 

distribution was distinctly different from that of TP in Florida Bay, Whitewater Bay, and 

Biscayne Bay.  In central Florida Bay the N-S gradient previously observed for TP was highly 

diminished for SRP indicating that almost all the TP in central Florida Bay was in the form of 

TOP.  It is unlikely that the source of TOP to this region is from overland flow or groundwater as 

this is also the region that expresses highest salinity.  Alternately, we hypothesize that the 

presence of the Flamingo channel, running parallel to the southern coastline of Cape Sable, acts 

as a tidal conduit for episodic advection of inshore Shelf water to enter north central Florida Bay.  

Subsequent trapping and evaporation then may act to concentrate TOP in this region.  The second 

difference in P distributions was that there was a significant SRP gradient present in NE Florida 

Bay that was not observed for TP.  The sources of SRP to this area are the Taylor Slough and  C-

111 basin (W. Walker per. communication; Boyer and Jones, 1999; Rudnick et al., 1999).   

 Whitewater Bay displayed an east-west gradient in SRP concentrations which increased with 

salinity leading us to conclude that the freshwater inputs from the Everglades were not a source 

of SRP to this area.  Finally, there was evidence of a significant onshore-offshore SRP gradient in 

southern Biscayne Bay; most probably as a direct result of canal loading and groundwater 

seepage to this region (Meeder et al., 1997).   

 Concentrations of TOC (Appendix 1) and TON (not shown) were remarkably similar in 

pattern of distribution across the South Florida coastal hydroscape. The decreasing gradient from 

west coast to Tortugas was very similar to that of TP.  A steep gradient with distance from land 

was observed in Biscayne Bay.  Both these gradients were due to terrestrial loading.  On the west 
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coast, the source of TOC and TON was from the mangrove forests.  Our data from this area 

shows that concentrations of TOC and TON increased from Everglades headwaters through the 

mangrove zone and then decrease with distance offshore.  In Biscayne Bay, much of the TOC 

and TON is from agricultural land use.  The high concentrations of TOC and TON found in 

Florida Bay were due to a combination of terrestrial loading (Boyer and Jones, in press), in situ 

production by seagrass and phytoplankton, and evaporative concentration (Fourqurean et al., 

1993).   

 Advection of Shelf and Florida Bay waters through the Sluiceway and passes accounted for 

this region and the inshore area of the Middle Keys as having highest TOC and TON of the 

FKNMS.  Strong offshore gradients in TOC and TON existed for all mainland Keys segments 

but not for the Tortugas transect.  Part of this difference may be explained by the absence of 

mangroves in the single Tortugas transect.  The higher concentrations of TOC and TON in the 

inshore waters of the Keys then implies a terrestrial source rather than simply benthic production 

and sediment resuspension.  Main Keys reef tract concentrations of TOC and TON were similar 

to those found in the Tortugas.   

 Much emphasis has been placed on assessing the impact of episodic phytoplankton blooms in 

Florida Bay on the offshore reef tract environment.  Spatial patterns of Chl a concentrations 

(Appendix 1) showed that NW Florida Bay, Whitewater Bay, and the Ten Thousand Islands 

exhibited high levels of Chl a relative to Biscayne Bay, Shelf, and FKNMS.  The highest Chl a 

concentrations were found in west coast mangrove estuaries (up to 45 µg l-1 in Alligator Bay, 

TTI).  Chl a is also routinely high (~2 µg l-1) in NW Florida Bay along the channel connecting 

the Shelf to Flamingo, ENP.  It is interesting that Chl a concentrations are higher in the 

Marquesas (0.36 µg l-1) than in other areas of the FKNMS.  When examined in context with the 

whole South Florida ecosystem, it is obvious that the Marquesas zone should be considered a 

continuum of the Shelf rather than a separate management entity.  This shallow sandy area (often 

called the Quicksands) acts as a physical mixing zone between the Shelf and the Atlantic Ocean 

and is a highly productive area for other biota as well as it encompasses the historical Tortugas 

shrimping grounds.  A Chl a concentration of 1 µg l-1  in the water column of a reef tract is 

considered a problem as it indicates potential of eutrophication.  On the other hand, a similar Chl 

a level in the Quicksands indicates a productive shrimp fishery.   
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 The oceanside transects in the Upper Keys (Seg. 9) exhibited the lowest overall Chl a 

concentrations of any zone in the FKNMS.  Ocean transects showed a slight increase in Chl a on 

the reef tract in this area.  Transects off the Middle and Lower Keys showed that a drop in Chl a 

occurred only in the reef tract sites; there was no linear decline with distance from shore (data not 

shown).  alongshore compared to the Middle and Lower Keys.  Interestingly, Chl a 

concentrations in the Tortugas transect showed a similar pattern as the mainland Keys.  Inshore 

and Hawk Channel Chl a concentrations among Middle Keys, Lower Keys and Tortugas sites 

were not significantly different.  As inshore Chl a concentrations in the Tortugas were similar to 

those in the Middle and Lower Keys, we see no evidence of phytoplankton bloom transport from  

Florida Bay under this type of sampling design.  There was however some slight evidence of 

increased Chl a in those stations along the major passes in the Keys relative to those abutting 

land.  The differences between these two groupings were very small (0.25 vs. 0.20 µg l-1).   

 Along with P concentration, turbidity is probably the second most important determinant of 

local ecosystem health.  The fine, low density carbonate sediments in this area are easily 

resuspended, rapidly transported, and have high light scattering potential per gram of material.  

High water column turbidity and transport directly affects filter feeding organisms by clogging 

their feeding apparatus and by increasing local sedimentation rate.  Sustained high turbidity of 

the water column indirectly affects benthic community structure by decreasing light penetration, 

promoting seagrasses extinction.  Large scale observations of turbidity clearly show patterns of 

onshore-offshore gradients which extend out onto the Shelf to the Marquesas (Appendix 1).  In 

the last seven years, turbidities in Florida Bay have increased dramatically in the NE and central 

regions (Boyer et al. 1998) potentially as a consequence of destabilization of the sediment from 

seagrass die-off (Robblee et al., 1991). 

 Strong turbidity gradients were observed for all Keys transects but reef tract levels were 

remarkably similar regardless of inshore levels.  High alongshore turbidity is most probably due 

to the shallow water column being easily resuspended by wind and wave action.  Inshore stations 

in the Middle Keys had higher turbidity than other segments.  Transects aligned with major 

passes had slightly greater turbidity than those against land but the difference was not statistically 

significant.  Light extinction (Kd) was highest alongshore and improved with distance from land 
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(data not shown).  This trend was expected as light extinction is directly related to the turbidity of 

the water. 

 Using the DIN:TP ratio is a relatively simple method of determining phytoplankton nutrient 

limitation status of the water column (Redfield, 1967).  Most of the FKNMS was shown to have 

DIN:SRP values < 16:1, indicating the potential for phytoplankton to be limited by N at these 

sites.  The bulk of Florida Bay and both southern and northern Biscayne Bay were severely P 

limited, mostly as a result of high DIN concentrations.  The south-north shift from P to N 

limitation observed in the west coast estuaries has been ascribed to changes in landuse and 

bedrock geochemistry of the watersheds (Boyer and Jones, 1998).  The west coast south of 25.4 

N latitude is influenced by overland freshwater flow from the Everglades and Shark River Slough 

having very low P concentrations relative to N.  Above 25.7 N latitude the bedrock geology of 

the watershed changes from carbonate to silicate based and landuse changes from relatively 

undeveloped wetland (Big Cypress Basin) to a highly urban/agricultural mix (Naples, FL).   

 

Time Series Analysis 

 We did not expect to see any temporal trends in the data because of the short data record 

(only 17 points on the graph), the usually high variability of the data, and the potential 

interference of a poorly resolved seasonal signal.  This was true for all measured variables except 

TP.  Trend analysis showed statistically significant increases in TP for the Tortugas, Marquesas, 

Lower Keys, and portions of the Middle and Upper Keys (Fig. 3).  These trends were remarkably 

linear and showed little seasonality.  Rates of increase ranged from 0.01-0.07 µM yr-1 which was 

especially significant considering initial concentrations to be ~0.1-0.2 µM (Table 2). The effect 

of increased TP on the phytoplankton biomass was not shown to be significant; i.e. no concurrent 

increases in Chl a were observed. 

 The trend in TP was system wide and occurred outside the FKNMS on the SW Shelf as well 

(Fig. 4).  It is important to emphasize that this trend was a regional phenomena and was not due 

to local inputs from the Florida Keys alone. These increases must also be put in perspective with 

other ecological changes occurring in the region.  No trends in TP were observed in the western 

Florida Bay/Inner Shelf zone or in those FKNMS sites most influenced by transport of Florida 

Bay waters.  During the same time period as this study, TP concentrations in Florida Bay proper 
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were declining (Boyer et al. 1999).  The absence of TP trends in the Middle and Lower Keys may 

have been due to the influence of low TP Florida Bay waters.  This is a marked departure from 

the more alarmist thinking of some scientists and public that Florida Bay is source of nutrients to 

the reef and a major cause of reef decline.   

 A simple model of potential forcing functions on TP concentration (or any other non-

conservative species) is shown in Fig. 5.  The local concentration of a biologically reactive 

nutrient such as TP may be affected by advective transport into or out of the compartment (tides, 

currents, etc.), benthic flux into or out of the water column (including sedimentation), biological 

uptake and remineralization in the water column, and atmospheric input.   

 At this time we can only speculate as to the cause of these increases in TP concentrations but 

it is clear that much of the trend is driven by regional circulation patterns arising from the Loop 

Current which entrains water from other coastal estuaries such as the Caloosahatchee River and 

Tampa Bay as well as the Mississippi.  That the increases have occurred in deep and shallow 

water stations at both the surface and bottom over a consistent period of time rules out episodic 

upwelling as a major factor.   

 We know of no data which addressed changes in internal cycling processes (benthic flux or 

water column cycling) over this period.  However, there is some preliminary evidence that 

seagrass may be responsible for some of the trend patterns.  Areas where TP trends were absent 

were also described as areas of dense seagrass beds (Fourqurean personal comm.).  One 

hypothesis is that the potential increase in TP concentration in these areas was modulated by 

uptake by the seagrass community and therefore showed no significant change. 

 

Summary 

 The large scale of this monitoring program has allowed us to assemble a much more holistic 

view of broad physical/chemical/biological interactions occurring over the South Florida 

hydroscape.  Much information has been gained by inference from this type of data collection 

program: major nutrient sources have be confirmed, relative differences in geographical 

determinants of water quality have been demonstrated, large scale transport via circulation 

pathways have been elucidated and temporal trends are becoming evident.  In addition we have 

shown the importance of looking "outside the box" for questions asked within.  Rather than 



 

 18 

thinking of water quality monitoring as being a static, non-scientific pursuit it should be viewed 

as a tool for answering management questions and developing new scientific hypotheses. 
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List of Tables 

 

Table 1.  Summary statistics for each water quality variable in the FKNMS.  Data are 

summarized as median (Median), minimum value (Min.), maximum value (Max.), and number 

of samples (n).   

 

Table 2.  Time series regression of total phosphorus.  Statistically significant slopes (P<0.10) are 

shown in boldface. 
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Table 1. 

Variable Segment Median Minimum Maximum n 
Surface  1 0.015 0.000 0.713 239 

NO3
- 2 0.022 0.000 1.153 303 

(µM) 4 0.141 0.000 4.418 368 
 5 0.090 0.000 1.550 452 
 6 0.055 0.000 2.940 235 
 7 0.066 0.000 2.094 278 
 9 0.058 0.000 1.658 506 

Bottom 1 0.072 0.000 4.455 239 
NO3

- 2 0.033 0.000 1.455 303 

(µM) 4     
 5 0.091 0.000 1.483 356 
 6 0.073 0.007 0.138 2 
 7 0.045 0.000 2.305 202 
 9 0.060 0.000 0.627 350 

Surface  1 0.028 0.000 0.325 239 
NO2

- 2 0.035 0.000 0.223 303 

(µM) 4 0.065 0.007 0.347 368 
 5 0.050 0.003 0.273 457 
 6 0.063 0.007 0.255 235 
 7 0.050 0.000 0.258 282 
 9 0.040 0.000 0.190 506 

Bottom 1 0.040 0.003 1.732 240 
NO2

- 2 0.035 0.000 0.613 303 

(µM) 4     
 5 0.045 0.000 0.200 360 
 6 0.033 0.033 0.033 2 
 7 0.043 0.000 0.688 205 
 9 0.037 0.000 0.167 347 

Surface  1 0.297 0.022 1.893 239 
NH4

+ 2 0.324 0.025 1.703 302 

(µM) 4 0.504 0.130 9.097 368 
 5 0.333 0.000 2.160 457 
 6 0.355 0.000 10.320 235 
 7 0.390 0.005 2.442 282 
 9 0.300 0.000 2.450 506 
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Bottom 1 0.287 0.007 1.320 240 
NH4

+ 2 0.302 0.028 1.255 303 

(µM) 4     
 5 0.334 0.000 2.377 360 
 6 0.330 0.253 0.407 2 
 7 0.307 0.000 1.885 205 
 9 0.295 0.022 1.880 347 

Surface  1 7.730 3.638 24.118 239 
TON 2 8.859 3.809 24.928 302 
(µM) 4 15.054 8.628 33.054 368 

 5 11.097 3.557 27.278 452 
 6 15.236 6.039 32.100 235 
 7 11.470 4.693 42.682 276 
 9 8.925 3.702 24.855 505 

Bottom 1 7.163 2.254 18.825 238 
TON 2 8.438 4.444 16.537 303 
(µM) 4     

 5 9.742 4.013 22.927 355 
 6 11.968 7.673 16.264 2 
 7 9.755 3.788 26.637 201 
 9 8.340 3.900 28.200 346 

Surface  1 0.185 0.083 0.350 240 
TP 2 0.205 0.049 0.660 303 

(µM) 4 0.230 0.092 0.621 368 
 5 0.175 0.000 0.382 457 
 6 0.228 0.119 0.843 235 
 7 0.170 0.010 0.576 282 
 9 0.153 0.000 0.295 503 

Bottom 1 0.192 0.085 0.638 239 
TP 2 0.208 0.033 0.518 303 

(µM) 4     
 5 0.173 0.000 0.395 358 
 6 0.240 0.135 0.345 2 
 7 0.169 0.010 0.391 204 
 9 0.157 0.000 0.350 346 

Surface  1 0.007 0.000 0.087 236 
SRP 2 0.010 0.000 0.092 303 
(µM) 4 0.010 0.000 0.297 368 

 5 0.005 0.000 0.203 457 
 6 0.007 0.000 0.258 235 
 7 0.007 0.000 0.098 282 
 9 0.005 0.000 0.120 506 
      



 

 25 

Bottom 1 0.010 0.000 0.390 238 
SRP 2 0.007 0.000 0.193 303 
(µM) 4     

 5 0.007 0.000 0.195 360 
 6 0.006 0.003 0.010 2 
 7 0.007 0.000 0.092 206 
 9 0.007 0.000 0.090 347 

Surface  1 0.031 0.010 0.195 180 
APA 2 0.038 0.013 0.840 230 

(µM hr-1) 4 0.086 0.007 1.286 365 
 5 0.050 0.014 0.370 454 
 6 0.080 0.010 0.552 235 
 7 0.062 0.010 0.434 273 
 9 0.056 0.009 0.450 483 

Bottom 1 0.029 0.010 0.080 179 
APA 2 0.039 0.008 0.261 230 

(µM hr-1) 4     
 5 0.046 0.000 0.428 358 
 6 0.020 0.000 0.040 3 
 7 0.053 0.000 0.491 198 
 9 0.050 0.000 0.206 331 

Surface  1 0.232 0.000 1.347 236 
Chl a 2 0.373 0.011 6.810 303 
(µg l-1) 4 0.289 0.000 6.388 368 

 5 0.271 0.000 1.676 455 
 6 0.247 0.067 1.970 234 
 7 0.237 0.000 1.792 282 
 9 0.202 0.000 2.698 506 

Surface  1 178.573 86.979 1054.792 238 
TOC 2 200.194 88.480 501.750 302 
(µM) 4 242.552 136.000 1653.542 368 

 5 203.560 93.438 674.042 453 
 6 271.104 122.170 970.167 235 
 7 211.688 98.083 805.310 281 
 9 193.896 92.646 512.479 505 

Bottom 1 169.625 89.375 883.104 238 
TOC 2 195.521 94.940 847.708 303 
(µM) 4     

 5 191.806 92.771 332.896 357 
 6 286.386 126.730 446.042 2 
 7 197.583 102.396 760.770 204 
 9 187.792 92.833 482.500 346 
      



 

 26 

Surface  1 0.310 0.000 3.902 209 
SI(OH)4 2 0.537 0.000 4.992 265 

(µM) 4 1.680 0.000 20.015 319 
 5 1.337 0.000 16.035 397 
 6 5.672 0.078 127.110 206 
 7 1.027 0.000 37.362 246 
 9 0.307 0.000 12.990 446 

Bottom 1 0.555 0.000 5.777 209 
SI(OH)4 2 0.675 0.000 6.923 265 

(µM) 4     
 5 1.053 0.000 11.110 311 
 6 0.273 0.273 0.273 1 
 7 0.590 0.000 30.195 181 
 9 0.284 0.000 11.360 306 

Surface  1 0.295 0.000 3.000 223 
Turbidity 2 0.853 0.000 18.800 285 

(NTU) 4 1.010 0.000 11.345 357 
 5 0.465 0.000 4.885 455 
 6 0.825 0.000 37.000 234 
 7 0.458 0.000 17.350 282 
 9 0.345 0.000 8.800 505 

Bottom 1 0.385 0.000 2.626 223 
Turbidity 2 1.100 0.000 9.100 285 

(NTU) 4 0.650 0.150 1.477 13 
 5 0.475 0.000 4.885 366 
 6 1.012 0.095 7.295 17 
 7 0.270 0.000 16.900 211 
 9 0.280 0.000 7.950 356 

Surface  1 36.200 32.300 36.600 237 
Salinity 2 36.200 33.600 37.000 297 

(ppt) 4 36.000 30.500 38.600 368 
 5 36.200 33.600 38.600 436 
 6 35.800 29.900 40.300 234 
 7 36.100 33.100 38.400 264 
 9 36.100 22.244 37.800 493 

Bottom 1 36.200 34.000 37.000 238 
Salinity 2 36.200 34.600 37.400 297 

(ppt) 4 36.000 33.400 38.700 365 
 5 36.208 33.400 38.600 433 
 6 35.800 29.900 39.700 232 
 7 36.130 33.000 38.900 266 
 9 36.100 21.738 37.800 471 
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Surface  1 26.100 21.100 31.100 239 
Temperature 2 26.500 19.287 32.300 298 

(oC) 4 27.900 19.100 36.100 368 
 5 27.400 20.300 33.600 439 
 6 28.500 20.900 32.700 234 
 7 26.150 19.500 39.600 264 
 9 25.900 17.300 32.200 494 

Bottom 1 24.700 18.200 30.600 239 
Temperature 2 25.695 19.000 32.200 298 

(oC) 4 28.000 18.700 36.800 365 
 5 27.000 20.100 33.400 435 
 6 28.500 20.300 32.700 232 
 7 25.800 19.400 32.900 267 
 9 25.621 17.100 32.100 473 

Kd 1 0.126 0.037 0.700 240 
(m-1) 2 0.208 0.030 0.961 299 

 4 0.326 0.026 2.562 326 
 5 0.180 0.005 1.090 434 
 6 0.370 0.021 1.389 177 
 7 0.188 0.009 1.546 269 
 9 0.203 0.007 1.573 443 

Surface  1 2.189 0.000 11.026 239 
DIN:TP 2 2.077 0.211 11.563 302 

 4 3.215 0.584 32.306 368 
 5 2.980 0.261 61.250 447 
 6 2.203 0.333 35.390 235 
 7 3.275 0.325 85.500 278 
 9 2.723 0.149 71.250 501 

Surface  1 92.495 0.000 150.029 234 
DOsat 2 92.623 0.000 114.926 294 
(%) 4 93.896 43.526 169.865 368 

 5 91.783 46.935 153.343 431 
 6 94.867 65.021 148.204 234 
 7 92.553 68.049 124.391 262 
 9 92.989 38.130 126.051 483 

Bottom 1 91.678 0.000 107.570 224 
DOsat 2 92.546 0.000 113.452 295 
(%) 4 94.194 43.526 171.438 365 

 5 91.969 46.935 143.602 427 
 6 95.310 62.684 149.616 232 
 7 93.061 46.915 127.425 261 
 9 93.817 0.000 128.710 463 
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∆σt 1 0.197 -0.190 5.552 236 
 2 0.059 -0.188 27.173 297 
 4 0.000 -4.424 6.528 365 
 5 0.076 -0.383 3.343 430 
 6 0.000 -0.370 3.590 232 
 7 0.070 -1.440 4.762 263 
 9 0.031 -3.185 1.522 466 
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Table 2. 

Station Site Slope P 
200 Fowey Rocks 0.033 0.030 
201 Sands Key 0.017 0.016 
202 Bowles Bank 0.009 0.430 
203 Triumph Reef 0.017 0.118 
204 Elliott Key 0.012 0.270 
205 Margo Fish Shoal 0.011 0.330 
206 Ajax Reef 0.022 0.018 
207 Old Rhodes Key 0.017 0.059 
208 Old Rhodes Key Channel 0.014 0.187 
209 Channel Key 0.028 0.004 
210 Old Rhodes Key Reef 0.028 0.006 
211 Pennikamp G27 0.013 0.313 
212 Turtle Harbor 0.011 0.273 
213 Turtle Reef 0.020 0.045 
214 Port Elizabeth 0.003 0.720 
215 Carysfort Channel 0.007 0.450 
216 Carysfort Reef 0.016 0.125 
217 Rattlesnake Key 0.012 0.120 
218 White Bank 0.021 0.020 
219 The Elbow 0.009 0.440 
220 Radabob Key 0.024 0.374 
221 Radabob Key Channel 0.019 0.067 
222 Dixie Shoal 0.014 0.091 
223 Mosquito Bank 0.017 0.057 
224 Molasses Reef Channel 0.023 0.025 
225 Molasses Reef 0.023 0.011 
226 Tavernier Harbor 0.025 0.004 
227 Triangles 0.034 0.001 
228 Conch Reef 0.029 0.001 
229 Plantation Point 0.035 0.001 
230 The Rocks 0.027 0.006 
231 Davis Reef 0.031 0.001 
232 Upper Matecumbe Key 0.026 0.007 
233 Upper Matecumbe Chnl 0.054 0.013 
234 Fish Haven 0.029 0.004 
235 Indian Key 0.036 0.005 
236 Indian Key Channel 0.034 0.000 
237 Indian Key Offshore 0.016 0.091 
238 Matecumbe Harbor 0.025 0.018 
239 Lower Matecumbe Chnl 0.025 0.019 
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240 Matecumbe Offshore 0.034 0.003 
241 Long Key 0.029 0.013 
242 Long Key Channel 0.025 0.045 
243 Tennessee Reef 0.039 0.001 
244 Long Key Pass Inshore 0.042 0.000 
245 Long Key Pass Channel 0.029 0.001 
246 Long Key Pass Offshore 0.022 0.004 
247 Key Colony Beach 0.026 0.021 
248 Coffins Patch Channel 0.007 0.253 
249 Coffins Patch Offshore 0.014 0.105 
250 Seven Mile Bridge 0.028 0.062 
251 Seven Mile Br. Channel 0.014 0.103 
252 Seven Mile Br. Offshore 0.018 0.123 
253 Spanish Harbor Keys 0.012 0.433 
254 Bahia Honda Key 0.008 0.447 
255 Bahia Honda Channel 0.006 0.547 
256 Bahia Honda Offshore 0.015 0.051 
257 Long Beach 0.018 0.055 
258 Big Pine Channel 0.015 0.078 
259 Big Pine Shoal 0.016 0.081 
260 Newfound Harbor Keys 0.015 0.143 
261 American Shoal Channel 0.013 0.139 
262 Looe Key Channel 0.017 0.025 
263 Looe Key 0.024 0.015 
264 Aquarius 0.026 0.025 
265  0.020 0.059 
266 Tarpon Creek 0.013 0.221 
267 American Shoal 0.014 0.032 
268 Saddlebunch Keys 0.026 0.026 
269 West Washerwoman 0.023 0.060 
270 Maryland Shoal 0.016 0.118 
271 Boca Chica Key 0.028 0.041 
272 Eastern Sambo 0.025 0.019 
273 Eastern Sambo Offshore 0.030 0.000 
274 Boca Chica Channel 0.053 0.001 
275 Boca Chica Mid 0.041 0.004 
276 Boca Chica Offshore 0.034 0.021 
277 Key West Cut A 0.028 0.024 
278 Western Head 0.026 0.066 
279 Main Ship Channel 0.032 0.009 
280 Eastern Dry Rocks 0.033 0.021 
281 Middle Ground 0.040 0.002 
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282 Arsenic Bank 0.006 0.710 
283  -0.027 0.423 
284 Tripod Bank -0.010 0.489 
285 Channel Key Pass 0.034 0.023 
286 Toms Harbor Cut 0.032 0.046 
287 Bamboo Banks 0.032 0.037 
288  0.016 0.321 
289 Bamboo Key 0.036 0.035 
290 Bluefish Bank -0.007 0.790 
291 Bullard Bank 0.012 0.456 
292 John Sawyer Bank 0.021 0.144 
293 Bethel Bank 0.024 0.075 
294 Red Bay Bank 0.015 0.212 
295 Bullfrog Banks 0.022 0.395 
296 W. Bahia Honda Key 0.012 0.393 
297 Cocoanut Key 0.014 0.378 
298 Harbor Key Bank 0.001 0.949 
299 Bogie Channel 0.013 0.145 
300 Little Pine Key 0.010 0.356 
301 Cutoe Key 0.004 0.690 
302 Content Passage 0.014 0.310 
303 Pine Channel 0.022 0.005 
304 Toptree Hammock Chan. 0.030 0.006 
305 Cudjoe Key 0.016 0.284 
306 Johnson Key Channel 0.016 0.215 
307 Tarpon Belly Keys 0.010 0.314 
308 Kemp Channel 0.019 0.070 
309 Snipe Point 0.015 0.241 
310 Snipe Keys 0.030 0.026 
311 Shark Key 0.008 0.370 
312 E. Harbor Key Channel 0.010 0.512 
313 Lower Harbor Keys 0.022 0.110 
314 Howe Key Channel 0.037 0.003 
315 Calda Channel 0.026 0.026 
316 Man of War Harbor 0.026 0.000 
317 Garrison Bight 0.025 0.002 
318 KY Northwest Channel 0.021 0.017 
319 N Boca Grande Channel 0.021 0.137 
320 Loggerhead Marker 0.018 0.163 
321 Loggerhead Channel 0.021 0.045 
322 Satan Shoal 0.030 0.007 
323  0.027 0.023 
324 Ellis Rock 0.024 0.054 
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325 SE Marquesas 0.043 0.140 
326  0.045 0.034 
327 N Quicksands 0.031 0.010 
328 Marquesas Rock 0.032 0.000 
329  0.035 0.004 
330 New Ground 0.036 0.009 
331  0.039 0.026 
332 S Quicksands 0.034 0.031 
333 Half Moon Shoal 0.038 0.009 
334  0.022 0.037 
335  0.028 0.032 
336  0.037 0.001 
337 Rebecca Shoal 0.034 0.000 
338 Garden Key 0.038 0.000 
339  0.045 0.005 
340  0.041 0.000 
341 Northwest Channel 0.043 0.000 
342 NE DTNP 0.041 0.000 
343 N DTNP 0.041 0.000 
344 Southwest Channel 0.036 0.001 
345  0.039 0.001 
346 W DTNP 0.045 0.000 
347 Loggerhead Offshore 0.037 0.001 
348 Hospital Key 0.035 0.002 
349 Logerhead Inshore 0.037 0.000 
350  0.032 0.000 
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List of Figures 

 

Fig. 1. The SERC Water Quality Monitoring Network showing the FKNMS boundary, segments, 

and distribution of sampling stations within the FKNMS, Florida Bay, Biscayne Bay, Whitewater 

Bay, Ten Thousand Islands, and Southwest Florida Shelf.   

 

Fig. 2. Contour plot of median difference in density between surface and bottom waters (∆σt) for 

the period of record.   

 

Fig. 3. Representative example of time series plot of TP (µM) with time at station #350 in the far 

SW corner of theTortugas segment.  Note the consistent increase and absence of seasonal 

variation.   

 

Fig. 4. Contour map of slope of trend line for significant regressions of TP (µM) with time. 
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Fig. 4 
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V.  List of Appendices 
 

Appendix 1.   Color contour maps of selected water quality variables by sampling event.   

   These maps encompass all 354 stations of the SERC Water Quality Monitoring  

   Network which includes the FKNMS, Biscayne Bay, Florida Bay, Whitewater  

   Bay, Ten Thousand Islands, and Southwest Florida Shelf.  The data was collected  

   over a period of a month so care should be taken in interpreting these maps as  

   they are not truly synoptic.   

 



 

 1 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1 - Contour Maps 
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