Global Biogeochemical Cycles

Global Trends in Air-Water CO₂ Exchange Over Seagrass Meadows Revealed by Atmospheric Eddy Covariance

Bryce Van Dam1, Pierre Ponsaert2, Aylin Barreras-Apoda3, Christian Lopes2, Zulia Sanchez-Meja1, Tatsuki Tokoro4, Tomohiro Kuwae4, Lucia Gutiérrez Loza1, Anna Rutgersson2, James Fourquarean3, and Helmuth Thomas1

1Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany; 2Irminer, Laboratoire Environnement et Ressources des Pertuis Charentais (LER-PC), BP133, La Tremblade, France; 3Instituto Tecnológico de Sonora, Ciudad Obregón, México; 4Department of Biological Sciences and Center for Coastal Oceans Research, Florida International University, Miami, FL, USA; 5Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, Yokosuka, Japan; 6National Institute for Environmental Studies, Center for Global Environmental Research (CGER), Office for Atmospheric and Oceanic Monitoring, Tsukuba, Ibaraki, Japan; 7Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Abstract Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO₂ as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air-water CO₂ flux (FCO₂), remains poorly understood. In this study, we synthesized all available direct FCO₂ measurements over seagrass meadows made using atmospheric Eddy Covariance, across a globally representative range of ecosystems. Of the four sites with seasonal data coverage, two were net CO₂ sources, with average FCO₂ equivalent to 44%–115% of the global average BC burial rate. At the remaining sites, net CO₂ uptake was 101%–888% of average BC burial. A wavelet coherence analysis demonstrated that FCO₂ was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing was a key driver of global-scale patterns in FCO₂, likely due to a combination of lateral carbon exchange, bottom-driven turbulence, and pore-water pumping. Lastly, sea-surface drag coefficients were always greater than the prediction for the open ocean, supporting a universal enhancement of gas-transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air-water CO₂ exchange, and its complex biogeochemical and physical drivers.

Plain Language Summary Carbon storage is a valuable ecosystem service of seagrass meadows, serving as a possible pathway to draw down atmospheric carbon dioxide (CO₂) levels. However, this approach may be unsuccessful if carbon storage in sediments is exceeded by the release of CO₂ from the water. To better understand the scope of this problem, we compiled all available measurements of air-water CO₂ exchange over seagrass meadows. We found that rates of CO₂ release or uptake were indeed large, even when compared with potential rates of carbon storage in seagrass soils. However, these large air-water exchanges of CO₂ did not occur for the same reason everywhere. While light availability was sometimes a strong predictor of air-water CO₂ exchange, tidal mixing and temperature were also very important, revealing a much more complex network of drivers than previously thought. Despite these diverse conditions, we found one key similarity across all sites, in that rates of air-water gas transfer appear to always be greater than would be expected for the open ocean. Taken together, the results of our study show that assessments of carbon storage in coastal seagrass ecosystems will be incomplete if they do not consider exchanges of CO₂ between the water and air.

1. Introduction

The coastal ocean plays a disproportionately large role in global and regional carbon (C) cycles (Pennel et al., 2019; Friedlingstein et al., 2019; Laruelle et al., 2018). In particular, seagrass-inhabited regions receive large quantities of terrestrial and marine organic carbon, much of which is sequestered in sediments and stabilized by extensive root mats (Prentice et al., 2020; Röhr et al., 2018). Carbon fixed locally by seagrasses...
and their epiphytes is also buried here, constituting a net removal of C from the atmosphere (Duarte et al., 2005; Kennedy et al., 2010). Despite some uncertainty regarding its ultimate source, this “blue carbon” reservoir (Kuwae & Hori, 2019; Macreadie et al., 2019) is a globally significant, yet sensitive, carbon stock (Fourqurean et al., 2012). However, these relatively high C burial rates in seagrass meadows, reaching 0.22 g C m⁻² yr⁻¹ (Duarte et al., 2005), must also be considered in the context of other C flows through the ecosystem, which acts synergistically or antagonistically to increase or decrease net C sequestration.

For example, the biotic or abiotic formation and burial of calcium carbonate in seagrass beds consume alkalinity, thereby generating CO₂ (Burdige et al., 2010; Burdige & Zimmerman, 2002; Hu & Burdige, 2007). Similarly, the degradation of organic matter in anoxic sediments produces CH₄ and N₂O at rates that may affect the net global warming mitigation potential of seagrass meadows (Oreska et al., 2020). As a result, some seagrass beds, especially those receiving large loads of allochthonous organic matter (Al-Haj & Fulweiler, 2020), or those where calcification rates are high (Howard et al., 2018), can be pushed towards net C source status, despite high rates of autotrophic C fixation (Macreadie et al., 2017; Sanders et al., 2019). In particular, the extent to which calcification mitigates photosynthetic CO₂ uptake, pushing seagrass ecosystems towards CO₂ source status remains a hotly debated topic (Howard et al., 2018; Sanders et al., 2019). While some calcium carbonate mineral is imported from adjacent systems and should not enhance CO₂ emissions (Saderne et al., 2019), confirmation of the role of calcification on air-water CO₂ exchange over seagrass meadows is still lacking (Macreadie et al., 2019).

Seagrass meadows may also vary between net ecosystem heterotrophy and autotrophy over daily to weekly time scales (Berg et al., 2019; Gazeau et al., 2005; Van Dam, Lopes, et al., 2019). Elsewhere, the anaerobic generation of alkalinity, largely through sulfate reduction and burial (Dollar et al., 1991) and denitrification (Byre & Ferguson, 2002), can increase the buffering capacity of the overlying water, enhancing atmospheric CO₂ uptake. Advection can also play a significant role, as seagrasses in river-dominated estuaries may receive waters over-saturated in CO₂, which is subsequently degassed in the wind-exposed coastal zone (Röhrl et al., 2018). Regardless of the mechanism, it is clear that C sequestration in “blue carbon” ecosystems is not simply the product of long-term organic carbon burial in sediments. Many other processes consume or produce dissolved inorganic carbon (DIC), such as calcification and anaerobic metabolism, respectively, thereby affecting air-water CO₂ fluxes (pCO₂), pushing these ecosystems towards net carbon sink or net source, independent of the organic carbon burial flux.

Given the broad global distribution of seagrasses, and the various coastal typologies they inhabit, it is no surprise that net ecosystem metabolism exhibits substantial geographic trends (Duarte et al., 2010). Similarly, pCO₂ in these systems is not uniform. In some regions, for example, light limitation of photosynthesis may play a critical role in net ecosystem productivity (Berg et al., 2019; Long et al., 2015) and CO₂ uptake (Gazeau et al., 2005; Tokororo et al., 2014). Elsewhere, due to greater turbidity or water depth, this factor may carry little leverage, exceeded in importance by tides (Polzenaere et al., 2012) or water temperature (Van Dam, Lopes, et al., 2020). Where temperature and biology allow, net ecosystem calcification may instead dominate water column carbonate chemistry (Perez et al., 2018; Van Dam, Lopes, et al., 2019). These reasons and others may contribute to differences in pCO₂ for seagrass meadows located at comparable latitudes or in similar climates.

Rates of carbon burial can be reliably assessed using natural and anthropogenic radioactive tracers, integrating this process over a sufficiently long period to accurately characterize burial over decadal to centennial scales. This is in stark contrast to pCO₂, where extreme temporal variability complicates attempts to integrate this flux over time. Existing “bulk transfer” approaches to quantifying pCO₂ rely on discrete measurements of CO₂ partial pressure (pCO₂), which often miss out on high-frequency variability. These pCO₂ measurements are then combined with a gas transfer coefficient, the parameterization of which is notoriously challenging due to the diverse physical forcing of air-water gas exchange in shallow coastal waters (Borges et al., 2004). For these reasons, direct measurements of pCO₂ are desirable, relative to parameterized estimates. Atmospheric Eddy Covariance (EC) has been used for decades to measure turbulent exchanges of gas and energy over terrestrial ecosystems (Aubinet et al., 2000), and the open ocean (Wanninkhof et al., 2009). While the arrival of under-water EC methods (Berg et al., 2003) has revolutionized studies of benthic oxygen metabolism (Attard et al., 2019), the lack of rapidly responding pCO₂ sensors means that this approach can only indirectly assess air-water CO₂ exchange (Berg et al., 2019). Atmospheric EC
methods have been available for decades, but have only recently begun to be used at nearshore intertidal or subtidal habitats (Chien et al., 2018; Honkanen et al., 2018; Ikawa & Oechel, 2015; Rey-Sánchez et al., 2017) including seagrass meadows (Polsenaere et al., 2012; Tokoro et al., 2014; Van Dam, Lopes, et al., 2020). Advantages of direct EC measurements of FCO₂ include: (1) continuous temporal coverage, (2) existence of standard methods for data processing, and (3) non-invasive and spatially representative measurements.

While direct FCO₂ measurements over seagrass meadows have existed for roughly a decade (Polsenaere et al., 2012), and some regional synthetic efforts have been made (Tokoro et al., 2014), these individual datasets have yet to be synthesized globally. Therefore, a set of very basic questions remains unanswered. Are there global patterns explaining why some seagrass meadows are CO₂ sinks and others are sources? Are these reasons typological, climatological, or simply latitudinal in nature? Are there any generalizable features of air-water CO₂ exchange across these diverse coastal habitats? These questions are central to “blue carbon” science (Legge et al., 2020; Macreadie et al., 2019), but have yet to be addressed. In the present study, we synthesize a data set of direct EC measurements of air-sea FCO₂ over seagrasses. While this data set is limited to only sites in the Northern hemisphere, it is the most complete synthesis to date, representing a broad range in latitude and ecosystem characteristics. We describe global trends in FCO₂, discuss temporal and spatial variability and associated controls, and compare FCO₂ with literature estimates of carbon burial.

A spectral decomposition is also used to identify sets of physical drivers important across temporal scales.

2. Materials and Methods

2.1. Study Sites

Direct EC measurements of FCO₂ were acquired for six subtidal or intertidal sites across a range in seagrass coverage. Together, these sites represent a broad zonal (110°W to 145°E) and latitudinal (24°N to 57°N) range (Figure 1) and are described in Table 1, along with the nearest recorded coastal typology from Dürr et al. (2011). From here on, we will use the acronyms (OES, AR, FK, FU, EES, BA) shown in Table 1, rather than the full names to refer to each site.

2.2. EC Measurements

While different analytical instruments were used at each site (Table 1), all EC measurements were conducted using coincident and rapid (10–20 Hz) measurements of CO₂ concentration and 3-dimensional wind velocity. All EC systems relied on infrared gas analyzers (IRGA) produced by LI-COR Biosciences, USA. These IRGAs were either of open- or closed-path configurations, depending on the environmental and power conditions at each site. Further information regarding the specific EC configurations used at each site can be found in the references shown in Table 1.

2.3. Data Quality Control

For all datasets processed using EddyPro software (Licor Biosciences, USA), data were screened to remove records with quality control (QC) code (Burba, 2010) greater than 1, resulting in a removal of 11.6% of the full data set. A detailed description of this QC criteria is provided elsewhere (Mauder & Foken, 2004), but briefly it seeks to combine tests for steady state and turbulence development into a single QC flag, where values >1 can be considered of “poor quality.” Next, in an effort to screen out data where a terrestrial influence was likely, we removed results where the shear conditions indicated a non-marine flux footprint. As described later, we discarded FCO₂ results when the ratio of uᵥ/Uₘₑₚₙ exceeded a threshold of 0.139, which was set as 150% of the average uᵥ/Uₘₑₚₙ (0.0924). This step resulted in the removal of an additional 14.6% of the data following QC code screening. Lastly, FCO₂ values greater than 3 standard deviations from the mean (FCO₂ > 10.4 μmol m⁻² s⁻¹) were considered anomalous and were removed, representing a final 1.3% of the remaining data set. Cumulatively, these screening steps removed 25.5% of the initial, post-processed data set. In keeping with convention, negative FCO₂ indicates a net CO₂ uptake, while positive values represent CO₂ emission.
Figure 1. Site Maps, including inset figure of data coverage for each site, where the black bars indicate the subset of reasonably “continuous” data used for the wavelet coherence analysis.

2.4. Energy Balance

Energy balance assessments are important components of terrestrial EC studies, as these energy flows (radiative as well as latent and sensible heat exchanges) directly control local water budgets and hence many ecosystem processes. In an idealized system, inputs of energy net solar radiation (R_n) are exactly balanced by latent (i.e., evaporative) and sensible heat fluxes, LE and H, respectively. Any departure from the 1:1
Table 1
Summary Table Describing Each Site Considered in This Study, Including the Estuarine Typology (Dürr et al., 2011), and Seagrass Community and Coverage Statistics When Available

<table>
<thead>
<tr>
<th>Site name</th>
<th>Estuarine typology</th>
<th>Seagrass community</th>
<th>Mean daily tidal range (tidal category)</th>
<th>Seagrass biomass (gC or gDW m⁻²)</th>
<th>Lat-long (decimal degree)</th>
<th>Days of data available (# measurement periods)</th>
<th>Methods reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Allen Keys, USA</td>
<td>BA</td>
<td>Type VI (Kart)</td>
<td>0.048 m (small-tidal)</td>
<td>4.8 gC m⁻²</td>
<td>25.03–30.68</td>
<td>314 (1)</td>
<td>Van Dam, Lopes, et al. (2020)</td>
</tr>
<tr>
<td>Estero El Soldado, Mexico</td>
<td>EES</td>
<td>Type VII (Arctic)</td>
<td>0.40 m (large-tidal)</td>
<td>-</td>
<td>27.95–110.97</td>
<td>357 (1)</td>
<td>Benitez-Valenzuela & Sanchez-Mejia, (2020)</td>
</tr>
<tr>
<td>Puren lagoon, Japan</td>
<td>FU</td>
<td>Type I (Small Deltas)</td>
<td>0.87 m (large-tidal)</td>
<td>16–318 g DW m⁻²</td>
<td>43.33 145.26</td>
<td>146 (3)</td>
<td>Tokoro et al. (2014)</td>
</tr>
<tr>
<td>Fukido estuary, Japan</td>
<td>FK</td>
<td>Type I (Small Deltas)</td>
<td>0.93 m (large-tidal)</td>
<td>32–88 gDW m⁻²</td>
<td>24.49 124.23</td>
<td>25 (1)</td>
<td>Tokoro et al. (2014)</td>
</tr>
<tr>
<td>Arcachon Bay, France</td>
<td>AR</td>
<td>Type II (Tidal Systems)</td>
<td>1.8 m (large-tidal)</td>
<td>93.4–114.9 gDW m⁻²</td>
<td>44.67–1.67</td>
<td>580 (2)</td>
<td>Polzenaer et al. (2012)</td>
</tr>
<tr>
<td>Östergarnsholm, Sweden</td>
<td>OES</td>
<td>-</td>
<td><0.5 (small-tidal)</td>
<td>-</td>
<td>57.45 18.98</td>
<td>1,156 (1)</td>
<td>Rutgersson et al. (2020)</td>
</tr>
</tbody>
</table>

Community and cover statistics are from Plus et al. (2010) and Carmen et al. (2019) for AR, from Tokoro et al. (2014) for FU and FK, from Armitage et al. (2011) for BA. Tidal ranges shown here were calculated from mean daily statistics over the entire study period, except for OES, where we apply a literature value of 0.5 m (Sahlie et al., 2008). EBS is considered a “large-tidal” site because it is located inside a tidal inlet where appreciable tidal currents exist despite a relatively low tidal range. Seagrass coverage at OES has not been quantitatively assessed, but historical analysis suggests a mixed community dominated by Zostera marina is present throughout these coastal waters (Boström et al., 2003; HELCOM, 2009).
Abbreviations: AR, Arcachon Bay; BA, Bob Allen Keys; EES, Estero El Soldado; FK, Fukido estuary; FU, Puren lagoon; OES, Östergarnsholm.

The relationship between R_e and total heat loss ($H + LE$), suggests that EC measurements are missing some energy flux. This could be due to non-stationary conditions, when spatial gradients in a variable (i.e., temperature) are advected past the measurement site, causing, for example, $LE + H$ to be greater/less than R_e. While these measurements may well be “real”, they can also be problematic because they indicate that factors outside the flux footprint have influenced the measured vertical fluxes at a given time. Similarly, energy can be stored in (or lost from) standing water when its temperature changes. In the present study, we have quantified this water-column heat storage (J) as a function of the change in water temperature considering the water depth, specific heat, and density of the water (Van Dam et al., 2020). Because of the very high heat capacity of water, frequent departures from the 1:1 relationship between $H + LE + J$ and R_e can be taken as indicators of lateral water exchange. This is of course concerning for EC studies of FCO₂ in shallow waters, where our goal is to attribute measured FCO₂ to processes happening inside the flux footprint (i.e., the seagrass meadow).

At sites where measurements of water temperature, water height, net solar radiation (R_{net}; W m⁻²), latent heat flux (LE; W m⁻²), and sensible heat flux (H; W m⁻²) were available, it was possible to construct an approximate energy budget. We determine the closure of this energy balance as the difference between R_{net} and the sum of LE, H, and J, integrated over 24 h (BA, EES, FK, OES) or 6 h when water-side measurements were limited (AR). When R_{net} data were absent, R_{net} was estimated from photosynthetically active radiation (PAR; μmol photons m⁻² s⁻¹) using an empirical relationship ($R_{net} = -0.60 * PAR − 0.12$; linear $R^2 = 0.98$) constructed using the combined data set from this study.

The energy balance at OES is somewhat more challenging to assess, in part because of a relatively complex bathymetry, which makes it difficult to estimate the water depth over which the water-column energy storage (J) should be integrated. The presence of seasonal and periodic stratification, as well as greater absolute water depths (up to 40 m), further complicates the energy balance here (Rutgersson et al., 2020). Therefore,
for OES, we calculated J using a water depth of 5 m, which was the depth at which water temperature was measured.

2.5. Time-Frequency Analysis

A wavelet coherence analysis (Grinsted et al., 2004; Torrence & Compo, 1998) was carried out to analyze the dependence of FCO₂ on net solar radiation (Rₙ), water depth (Z_water), air temperature (T_air), water temperature (T_water), wind speed (U_wind), and wind direction (U_dir) across temporal scales and through time. This analysis was completed in the “wavelet-coherence” package for MATLAB R2017 (Grinsted et al., 2004). Due to the sporadic nature of these coastal BC deployments, the temporal coverage is somewhat patchy, creating a problem for time-series analysis. So, prior to wavelet coherence analysis, the largest period of contiguous data availability was identified for each site (black bars shown in Figure 1), and only this period was used for subsequent wavelet analysis. This choice improved data quality at hourly to monthly time scales, but necessarily involved a loss of information at longer scales. The small remaining gaps in the pseudo-continuous datasets (due to poor QC, instrument failure, etc.) were filled with mean statistics for each variable, and the edges were padded with zeros (Grinsted et al., 2004). Because this wavelet analysis requires that the probability distribution function is approximately normal, we used the “normalizepdf” function to transform each data set to have a mean of zero and a unit variance (Grinsted et al., 2004). We finally applied a Morlet wavelet to the time series using the “wtc” function (Grinsted et al., 2004) and estimated the 95% confidence intervals with 15 Monte Carlo simulations.

3. Results and Discussion

3.1. Energy Balance

The energy balance closure was best for BA, with daily average Rₙ closely balanced by net heat losses (H + LE + J) (Figures 2a and S1). This was not the case for the remaining sites for which a complete energy balance could be assessed (EES, FK, FU, AR, OES). At EES, most daily average heat losses (H + LE + J) fell below the 1:1 line (Figures 2b and S1), indicating either a measurement error, or the presence of a missing heat flux that we currently do not account for. At EES, this missing heat flux could plausibly be related to horizontal advection and tidal exchange with the adjacent upwelling system. Similarly, low heat losses relative to Rₙ were observed at OES (Figure 3b), but the microtidal nature of this site suggests that the energy budget imbalance here could be related to horizontal advection and wind-driven upwelling. The energy balance is further complicated at OES due to periodic stratification and variable water depths, and our approach of assuming a single, average water height to calculate J, may not be appropriate.

At FU, H + LE + J was always much less than Rₙ, indicating that water column heating was a major, yet unaccounted for, energy sink. In contrast to the previous sites where H + LE + J was typically less than Rₙ (EES, OES, FU), daily heat losses were always greater than Rₙ at both AR and FK (Figures 2c, 3a, and S1). This suggests the presence of an additional heat source, beyond net solar radiation (Rₙ). Since tidal ranges are relatively large at both AR and FK, we suggest that tidal mixing was the source of warmer water (following solar heating of exposed tidal flats), allowing heat losses through H and LE to exceed net solar inputs.

To further illustrate the role of tidal forcing on energy budgets, we calculate an energy balance residual (EBR) as (EBR = [J + H + LE] - Rₙ), which represents the departure from the 1:1 line in Figure S1. When EBR is plotted against the range in water height, it becomes clear that tidal forcing plays a key role in governing energy balances across a global distribution of seagrass meadows (Figures 2 and 3). At both microtidal (BA) and tidal (EES and FK) sites, the intercept of EBR with tidal range is not significantly different from zero (α = 0.05), indicating that the energy budget is in approximate closure when tidal forcing is not present. The y-intercept was not zero at FU (−374.7 ± 243.9 W m⁻²), but the presence of a significant negative relationship between EBR and tidal range supports the role of tidal exchange as a sink for heat.

At BA, there appears to be little energy “leakage” due to tidal advection, as EBR does not vary with the daily range in water height (Figure 2a). However, at both tidal sites (EES and FK), there is a significant linear correlation between EBR and the tidal range (α = 0.05). This relationship is positive for FK, such that energy inputs from Rₙ are exceeded by loss through LE, H, or J, with the difference increasing with tidal range.
Figure 2. Energy balance residual EBR (difference between J+H+LE and Rn) versus tidal range for RA (a), EES (b), FK (c), and FU (d). Linear slopes for EES, FK, and FU are significantly different from zero and are shown in bold line, while the slope is insignificant for RA (a). EBR, energy balance residual; EES, Estero El Soldado; FK, Fukido estuary; FU, Furen lagoon.

(Figure 2c). This positive EBR implies an input of relatively warm water to the FK embayment, a likely event for a subtropical site during the summer (data for FK are from 23 July to 17 August 2011). The trend is reversed at EES, with EBR becoming more negative with increasing daily tidal range, implying a “leakage” of energy via tidal exchange (Figure 2b). Because the seagrass meadows at EES are influenced by seasonal upwelling in the eastern Gulf of California (Lluch-Cota, 2000), such a heat exchange between warm coastal waters and cooler, recently upwelled water appears plausible.

We used direct, EC measurements of heat fluxes as a conservative tracer, and showed that tidal forcing can explain large-scale trends in energy balances, despite some key site-specific differences. Because the subset of three sites considered here (BA, EES, FK) are at approximately the same latitude (Table 1), the impact of latitudinal differences in LE (Figure 6d) can be excluded as a secondary factor. In subsequent sections, we

Figure 3. Violin plots of EBR for AR (a) and OES (b). AR, Arcachon Bay; EBR, energy balance residual; OES, Østergarnsholm.
will extend the results of this analysis to a non-conservative constituent, CO$_2$. We will discuss the impact of tidal mixing on air-water CO$_2$ exchange, in the context of the coastal “blue carbon” sink.

3.2. General Patterns and Trends in FCO$_2$

FCO$_2$ was highly variable at all sites, fluctuating in time between sink (negative FCO$_2$) and source (positive) behavior. Averaged over the entire study period, however, FCO$_2$ was negative for four sites (EES, FU, FK, AR) and positive for the other two sites (BA, OES). The spread of FCO$_2$ in micro-tidal regions (OES, BA) was much more narrow range than in tidal areas (FU, FK, AR, EES), suggesting that the general relationship between tidal forcing and energy fluxes (Figure 2) also applies to air-water CO$_2$ exchange.

These average CO$_2$ evasion/invasion rates are plotted (Figure 4) alongside organic carbon burial rates (CBR) taken from a global literature review (Samper-Villarreal et al., 2018 [A], Prentice et al., 2020 [B], Duarte et al., 2005 [C], Kennedy et al., 2010 [D], and Sanders et al., 2019 [E]). Converted into the same unit as FCO$_2$, these literature CBRs ranged from −0.025 to −0.23 μmol C m$^{-2}$ s$^{-1}$, for a global average of −0.126 ± 0.082 μmol C m$^{-2}$ s$^{-1}$. The comparison of CBR with FCO$_2$ should be made with some caution, as CBR represents time scales much longer (decades to centuries) compared with our FCO$_2$ measurements, for which the longest available data set is just over three years long.

Nevertheless, for the sites with complete seasonal coverage (BA, EES, FU, OES), it is apt to make a comparison between the rate of carbon storage in sediments and the exchange of CO$_2$ with the atmosphere. As is evident in Figure 4, mean FCO$_2$ was of similar magnitude to CBR (not always the same direction), indicating that both of these biogeochemical fluxes are relevant to the carbon budget of seagrass meadows. Considering an average CBR of 0.126 μmol m$^{-2}$ s$^{-1}$, net emissions at BA released CO$_2$ to the atmosphere at a rate comparable to 125% of mean global organic carbon burial (100% * 0.158/0.126 = 125%). Assuming lateral import and export of DIC and alkalinity were balanced, which is plausible at this site (Van Dam, Lopes, Polsenare, et al., 2020), the net effect of this CO$_2$ emission was to transition the site from a sink for carbon into a small source. It is likely that the relatively high calcification rates in Florida Bay (Howard et al., 2018) are responsible for generating CO$_2$ in excess of photosynthetic uptake, pushing this site towards net CO$_2$ emissions. This is a noteworthy finding in light of the commonly held view that carbonate-rich seagrass meadows can still be CO$_2$ sinks due to the import of allochthonous CaCO$_3$ (Saderne et al., 2019). The lack of strong tidal forcing and lateral water exchange at BA adds confidence to our finding of net CO$_2$ emissions at this site and supports our interpretation that calcification in seagrass meadows can be sufficient to offset autotrophic CO$_2$ uptake.

Similarly, net CO$_2$ emissions at OES were 44% of the average global CBR. It should be noted that the greater water depth at OES means that water-column processes are likely more important than benthic processes here in comparison with the other sites. The role of seagrass is therefore relatively more uncertain at this site. At the remaining sites, net negative FCO$_2$ uptake increased carbon uptake by 88% (FU) and 101% (EES), relative to global average CBR. As discussed later, net CO$_2$ uptake at these “large-tidal” sites do not necessarily point to increase carbon storage, but rather export of DIC or import of alkalinity to/from adjacent waters. This simple assessment indicates that the consideration of only CBR or FCO$_2$ alone will bias the magnitude, or even sign (in the case of BA) of the coastal carbon sink. Therefore, we point to a clear need for site-specific measurements of both annually integrated FCO$_2$ (by EC, for example) and CBR, which together may significantly increase the reliability of coastal carbon accounting.

Differences were also evident in the temporal trends in FCO$_2$ (Figure 5). Some sites exhibited a clear diel cycle of CO$_2$ uptake (EES, FK, AR) or release (FU) during the day, while other sites were relatively consistent CO$_2$ sources (BA, OES). A significant global trend of decreasing latent heat flux (LE) with increasing latitude is evident (Figure 6d), which is expected given the similar global trend of decreasing insolation at higher latitude. On the contrary, no relationship was observed between FCO$_2$ and latitude (Figure 6b). Instead, as suggested by the variation in FCO$_2$ with tidal setting (Figure 4), and the poor energy balance closure for large-tidal sites (Figure 2), the best predictor for site-averaged FCO$_2$ was in fact tidal range (Figure 6a).
Figure 4. Violin plots of FCO₂ for large-tidal (blue) and small-tidal (red) sites. In the right plot, literature values of carbon burial rates (CBR, black diamonds) are shown alongside average FCO₂ values (blue and red circles), on the same y-axis. The circles are scaled by the number of measurements available for each site. CBR averages are from Samper-Villarreal et al. (2018) (a), Prentice et al. (2020) (b), Duarte et al. (2005) (c), Kennedy et al. (2019b) (d), and Sanders et al. (2019a) (e). CBR, carbon burial rates.

3.3. Environmental FCO₂ Drivers: Wavelet Coherence

Results from the wavelet coherence analysis are shown in Figure S2, for the following selection of variables: net solar radiation (R_{solar}), water depth (Z_{water}), air temperature (T_{air}), water temperature (T_{water}), wind speed (U_{mean}), and wind direction (U_{dir}). The color indicates the strength of the correlation between each variable and FCO₂ with the phase of this relationship shown by the direction of the arrow. When the variables are in phase (positively correlated), the arrow points right, out of phase (negative correlation) the arrow points left, and when the driver leads FCO₂ by 90° the arrow points down. Subsequently, these results are summarized in Figure 7, which presents the average R^2 for the entire period of record, collapsed along the x-axis in Figure S2. To prevent times of anti-phase correlation from canceling out in-phase correlations (at the same period), the average presented in Figure 7 was calculated using the absolute value of R^2. As such, Figure 7 only represents the average strength, not the direction, of the correlation between each variable and FCO₂.

3.3.1. Weekly-Monthly Periods

The importance of each environmental driver on FCO₂ varied across sites and time scales. However, at BA and OES there was generally less power at the daily time scale than there was at weekly-monthly periods. First, as expected for a small-tidal site, Z_{water} was the least predictive variable in the wavelet coherence

Figure 5. Daily (a) and seasonal (b) climatology of mean FCO₂ for all sites. Negative values of FCO₂ indicate a net CO₂ uptake, while positive values show emission. The shaded areas represent the SE of mean FCO₂ at each hour.
Figure 6. Scatterplots of mean FCO$_2$ (top panels) and LE (bottom panels) against tidal range and latitude, where the points are colored by the size of the data set. Linear correlations are shown in bold where slopes are significantly different from zero (a and d; $R^2 = 0.504$ and 0.78 respectively, $p < 0.01$). An estimated mean tidal range at OBS of 0.5 m (Sahlée et al., 2008) was used for this figure. OES, Österåkerholm.

analysis at BA, even at the semidiurnal lunar tide (M2 period, ~12.5 h). This is in line with the results of the energy budget analysis (Figure 2), supporting the concept that tidal forcing was not an important driver of FCO$_2$ here. Instead, weekly-monthly scale variations in T_{water}, T_{air}, U_{mean}, U_{dir} were especially prominent as drivers of FCO$_2$, rivaling the impact of diel R_{d} variability (Figures 7a and S2). In particular, the strong positive correlation between T_{water} and FCO$_2$ across multiple time scales supports (1) the role of ecosystem calcification as a putative CO$_2$ source, and (2) the importance of thermal forcing of air-water gas transfer (Van Dam et al., 2020).

As was the case for BA, power at the M2 period was not elevated at OES, indicating that tidal forcing was not an important driver of FCO$_2$ here. Instead, power was focused at longer weekly-monthly time scales at OES (and BA). Because much of the variability at these longer periods is due to synoptic- or meso-scale events, it seems likely that weather patterns at these intermediate time scales may be important drivers of FCO$_2$ at both OBS and BA. Such weather events have also been shown to enhance methane emissions at OBS (Gutiérrez-Loza et al., 2019). Fluxes at OBS are also known to exhibit a strong seasonal cycle (Rutgersson et al., 2020), although the presence of data gaps prevented the incorporation of seasonality into this wavelet coherence analysis. The relatively deep water at this site may also support the dominance of long time-scales at OBS.

3.3.2. Daily and M2 Periods

At both EES and FU, we observed clear bands of power at the daily and M2 time scales (Figure S2), supporting the diel trends present in the FCO$_2$ climatology (Figure 5). At EES, all variables considered were correlated with FCO$_2$ at the daily time scale, but traded off in importance over the period of record (Figure S2). For example, U_{mean} was strongly out of phase with FCO$_2$ during the first half of the study period at EES, while Z_{water} and T_{water} were only weakly correlated with FCO$_2$. During the second half of the period of record, this trend reversed, with Z_{water} and T_{water} exceeding U_{mean} as drivers of diel variability in FCO$_2$. Seasonal changes in seagrass productivity at EES are a candidate explanation for these corresponding seasonal trends in the drivers of diel-scale variability in FCO$_2$ and are discussed in detail elsewhere. However, we cannot
Figure 7. Wavelet coherence analysis summary showing the mean power (R^2) for the relationship between FCO$_2$ and net solar radiation (R_n), water depth (Z_{water}), air temperature (T_{air}), water temperature (T_{water}), wind speed (U_{wind}), and wind direction (U_{dir}), averaged over the length of each data set (x-axis in Figure S2). The red shading indicates periods where we suspect uncertainty due to edge effects, estimated as 90% of the maximum period. Because positive and negative R^2 values cancel out when averaged, we calculated this statistic using absolute value R^2. This action effectively sacrifices knowledge of the correlation phase in exchange for a more intuitive summary of the correlation power.

rule out the importance of seasonal upwelling in the eastern Gulf of California (Lluch-Cota, 2000), which may introduce cooler, high-pCO$_2$, coastal waters to the EES system.

At FU, the diel trend in FCO$_2$ was opposite of the trend elsewhere, such that CO$_2$ uptake was greater at night, and decreased during the day (Figure 5). This may appear counterintuitive, given the expectation of greater CO$_2$ uptake during the day, as supported by photosynthesis-irradiance curves at this site during the summer (Tokoro et al., 2014). However, these estimates of net ecosystem productivity varied from positive to negative over all light regimes in both summer and winter months (Tokoro et al., 2014), indicating that inorganic carbon fluxes were affected by factors other than net ecosystem primary productivity during this time period. Across all periods, T_{air} was the strongest predictor of FCO$_2$ at the boreal FU site (Figure S2), such that covariances in T_{air} and FCO$_2$ are in phase (Figure 7c). This in-phase correlation between FCO$_2$ and T_{air} (T_{water}) at FU suggests the thermal impact of changing water temperature on pCO$_2$, where pCO$_2$ rises during the day as water warms and decreases overnight as solubility increases (Takahashi et al., 2002), in line with prior findings at Bob Allen Keys, Florida (Van Dam et al., 2020). As with the other large-tidal
sites, correlations between Z_{water} and FCO$_2$ at FU were strongest at the diel and M2 periods, further supporting the role of tidal forcing on air-water CO$_2$ exchange.

3.3.3. Wavelet Coherence: Sites With Limited Data

Due to the limited length of data for both FK and AR, it was not possible to assess variability at time scales of a week or more. Nevertheless, tidal forcing appeared to play a prominent role at AR, where Z_{water} and FCO$_2$ were correlated (generally in-phase) at the diel and M2 periods (Figure S2). This is in line with previous findings demonstrating a general trend of CO$_2$ uptake during low tide and release during high tide at AR (Polisenère et al., 2012).

At FK, strong anti-phase correlations were found at the diel time scale for R_n, T_{water}, and T_{air}, while an in-phase relationship was present between FCO$_2$ and Z_{water} (Figure S2). The presence of anti-phase relationships between FCO$_2$ and R_n, T_{water}, and T_{air} strongly suggest photosynthetic CO$_2$ uptake as a driver of FCO$_2$ during the short period for which measurements are available at FK. Since CO$_2$ solubility decreases with increasing temperature, one would expect FCO$_2$ and air or water temperatures to be in phase. The existing anti-phase relationship between these variables suggests that something other than thermal forcing, namely biological CO$_2$ fixation, caused the daytime CO$_2$ uptake at FK. The combination of shallow water depths (<2 m) and relatively low phytoplankton Chlorophyll-a (Tokoro et al., 2014) suggests that submerged aquatic vegetation, mostly seagrass, was responsible for the majority of this CO$_2$ uptake. As with the remaining large-tidal sites, the strong power at the M2 period for most variables (Figure 7d) supports tidal forcing as a key driver of FCO$_2$.

3.4. Air-Side Physical Drivers of FCO$_2$

Numerous factors contribute to the physical forcing of gas transfer in shallow coastal waters, including friction with the bottom (Rosentrater et al., 2017; Zappa et al., 2003), water-side convection (Podgrajsek et al., 2015; Van Dam, Edison, & Tobias, 2019), breaking waves, and biogenic surfactants. Nevertheless, wind speed remains the most commonly used driver in gas transfer parameterization, even in coastal waters. While a rigorous quantification of gas transfer rates is beyond the scope of this study, our data set contains valuable information on the turbulent processes responsible for air-sea gas exchange and may help to illustrate features that are globally consistent or variable. Such a comparison is currently absent from the coastal gas-transfer literature.

In the open ocean, the transfer of momentum (and therefore gas) between the sea and air is strongly associated with the wind stress (τ), which is proportional to the atmospheric friction velocity (u_*) through $\tau \sim u_*^2$ (Upstill-Goddard, 2006). The shape of the relationship between wind speed and u_*, therefore, is of great interest. When sites are mostly surrounded by water, such that the flux footprint is aquatic across most wind directions (FU, OES), u_* increases linearly with wind speed (U_z), at a slope of approximately 0.035 (Figures 8c and 8e). At the remaining sites, which experience a terrestrial influence at certain wind directions (BA, EHS, AR), there is a clear dependence of the slope on wind direction (Figures 8a, 8b, and 8d). At these sites, when the wind direction is such that the flux footprint is entirely aquatic (blue points for Figures 8a and 8b), u_* scales with wind speed at the same 0.035 slope. However, when a terrestrial influence is likely (e.g., winds between 180 and 360° at BA), the slope between u_* and wind speed increases and becomes variable, as expected for relatively rough terrestrial surfaces. Since a terrestrial influence is not desirable for the present study, we discarded FCO$_2$ values when this ratio was greater than 150% of the average u_*/U_z (i.e., when $u_*/U_z > 1.5 \times 0.0924$). The associated threshold slope of u_*/U_z (0.139) is shown as the red line in Figure 8.

The nature of momentum transfer (and thereby gas transfer) can be further assessed through the drag coefficient associated with the measurement height z ($C_{D_{\text{z}}} (z)$), which is related to the aforementioned ratio of u_*/U_z through $C_{D_{\text{z}}} (z) = \left(\frac{u_*}{U_z} \right)^2$, where U_z is the wind speed (m s$^{-1}$) at the measured height. At all sites, calculated values of $C_{D_{\text{z}}}$ were highly variable with wind speed, but generally exceed parameterizations for the open ocean by a factor of at least 5-10 (Figure 9a). The general distribution of $C_{D_{\text{z}}}$ with U_z fits the pattern observed in Vickers et al. (2013), who describe three main domains, where (1) $C_{D_{\text{z}}}$ is large, and not
strongly related to $U_s (1–4 \text{ m s}^{-1})$, (2) moderate winds ($4–10 \text{ m s}^{-1}$) where C_{DO3} is constant at ~ 0.01, and (3) a regime of increasing C_{DO3} at U_s greater than 10 m s^{-1} (only visible for BA and OES in Figures 9b and 9f).

The elevation in C_{DO3} above values expected for the open ocean may be related to the increased roughness of immature, “growing” waves under fetch-limited conditions (Mahrt et al., 1996; Rutgersson et al., 2020; Vickers & Mahrt, 1997). Small-scale non-stationary winds have been shown to enhance fluxes above the theoretical expectations for lower wind speeds in marine conditions (Mahrt et al., 2020). This C_{DO3} enhancement may be related to “disturbed” or “growing” wave fields which may be present at low, as well as high, wind speeds (Rutgersson et al., 2020). These “growing” wave fields under non-stationary conditions may offer a possible explanation for the observed increase in C_{DO3} at wind speeds between 1 and 5 m s$^{-1}$ (Figure 9a).

However, it is clear that other factors may also contribute to this C_{DO3} enhancement, including bottom-driven turbulence, surfactant activity, shallow water depth (more rapid wave breaking) and the presence of additional submerged roughness elements (i.e., seagrasses). For example, at very low wind speeds, the combination of increased air-side convection and unstable-to-neutral conditions has been associated with enhanced gas transfer rates (Sahlee et al., 2008; Van Dam, Lopes, et al., 2020). However, this effect is not clear in the present data set, as atmospheric stability (z/L) was not related to these periods of increased C_{DO3} (not shown).

3.5. Global Trends

While LE fluxes exhibited a significant latitudinal trend, with net evaporative heat losses increasing towards the equator (Figure 6d), such a trend was not apparent for FCO$_2$ (Figure 6b). Instead, tidal forcing appeared as the key global driver of FCO$_2$ trends in seagrass meadows, with large-tidal sites exhibiting a greater FCO$_2$ range (Figure 4), and magnitude toward a CO$_2$ sink status (Figure 6a), than small-tidal sites. Furthermore, small-tidal sites (BA, OES) responded strongly to variability at time scales longer than a day (Section 3.3.1), while the large-tidal sites (EES, FU, FK) were more sensitive to variability at the M2 and daily time scales.
Figure 9. Relationship between \(U_z \) and \(C_{\text{DIC}} \), after filtering by the \(u_\ast/U_z \) threshold (a). A selection of open-ocean relationships from the literature is depicted in the solid lines. Similar scatterplots for individual sites, showing all data (b–f), including measurements where \(u_\ast/U_z \) exceeded the 150% threshold which are represented by the blue points.

(Section 3.3.2). Many factors may contribute to this global trend in tidal forcing of air-water CO₂ exchange. Tidal currents can enhance rates of gas transfer when bottom-generated turbulence impacts the air-water interface (Ho et al., 2014; Rosentretter et al., 2017; Upstill-Goddard, 2006), but under certain conditions may suppress gas transfer when currents are strong enough to re-suspend sediments (Abril et al., 2009). Similarly, tidal impacts on sediment biogeochemical cycling can cause variations in the air-water CO₂ gradient. Sediment resuspension and tidal oxygen pumping can enhance rates of aerobic respiration enhancing CO₂ release (Aimroth-Rosell, et al., 2012; Stähler et al., 2006). Elsewhere, current can generate pressure gradients which flush anaerobic respiration products from sediments, either increasing or decreasing pCO₂ in proportion to DIC and alkalinity fluxes (Santos et al., 2015). At a larger scale, tidal mixing drives inorganic carbon “outwelling” from coastal marshes (Cai et al., 1999), with an effect on air-water CO₂ exchange that should be proportional to the DIC:TA export ratio.

Because these factors act synchronously and are often correlated with each other, it is impossible to attribute the global trend of decreasing magnitude and range in FCO₂ with a single “tidal” factor. For example, tidal mixing may interact with allochthonous factors, driving net CO₂ release via DIC “outwelling” (Polseñaere et al., 2012; Volta et al., 2020), or enhancing CO₂ uptake through coastal wetland alkalinity export (Akhand et al., 2020; Cai et al., 1999; Santos et al., 2015). In these cases, blue carbon assessments should be careful to avoid “double-counting” carbon that was produced or consumed in tidally connected systems. On the other hand, in less tidal regions, measured air-water CO₂ exchanges may in fact be due to allochthonous processes like calcification or respiration of buried seagrass organic matter. As the goal of the blue carbon community is to capture the impact of seagrass meadows on net carbon storage, it is critical that these “missing” CO₂ exchanges be incorporated into blue carbon budgets. Taken together, we argue that tidal dynamics should be considered during blue carbon assessments. This will help to distinguish between seagrass meadows where air-water CO₂ exchanges either reflect real blue carbon enhancement/mitigation or are simply the result of lateral fluxes.
4. Summary and Conclusion

We produced a global synthesis of all available atmospheric EC measurements of air-water CO$_2$ exchange (FCO$_2$) over shallow, seagrass-dominated environments. At most sites, the absolute magnitude of FCO$_2$ was as large or larger than published “blue carbon” burial rates (CBR). Elsewhere, CO$_2$ fluxes in excess of organic carbon storage have been reported for Japanese seagrasses (Kuwae & Hori, 2019), but the present study demonstrates that this is a global, not regional phenomenon. At seagrass meadows functioning as net sources of CO$_2$ to the atmosphere (BA, OES), FCO$_2$ was between 44 (OES) – 115 (BA)% of global average CBR (0.13 µmol m$^{-2}$ s$^{-1}$). Assuming minimal lateral exchange, this effectively converted BA from a net carbon sink into a net carbon source. Datasets for both BA and OES contain substantial and representative measurements during all seasons (Figure 5b), indicating that while there is substantial seasonal variability (Rutgersson et al., 2020) in FCO$_2$, these sites are indeed both net sources of CO$_2$ to the atmosphere. We suggest net ecosystem calcification at BA as a putative source of this CO$_2$, due to the correlation between FCO$_2$ and temperature, and the large CaCO$_3$ stocks present at this site (Howard et al., 2018). We suggest that at these and other seagrass meadows with minimal tidal forcing, future blue carbon assessments should consider air-water CO$_2$ exchange. Here, net CO$_2$ release or uptake is likely driven by autochthonous processes like anaerobic alkalinity production, calcification, or respiration of recently buried seagrass organic matter, all of which do contribute to net blue carbon sequestration. For the other sites with complete seasonal data, net CO$_2$ uptake was ~100% (EES) to over 800% (FU) of global average CBR. At these sites, the presence of tidal forcing brings into question if or how this CO$_2$ uptake should be incorporated into blue carbon budgets, as it is likely driven by allochthonous factors like lateral DIC or alkalinity exchange (Akhand et al., 2020; Volta et al., 2020).

We then identified drivers of FCO$_2$ that are present across the large range in seagrass ecosystems, which are responsible for generating this “disagreement” between CBR and net carbon sink/source status. First, we considered the leverage exerted on FCO$_2$ by the physical processes affecting rates of air-water CO$_2$ exchange, and found that surface roughness ($C_{D(g)}$) was always greater than expected for the open ocean, suggesting a near-universal enhancement of gas transfer in shallow, coastal waters. Next, many lines of evidence point to tidal-driven exchanges as a key driver for FCO$_2$ over seagrass meadows. First, we show a clear relationship between tidal range and energy balance residual, which persists across our global range in study sites. This energy balance “leakage” under tidal conditions indicates that the lateral exchange of dissolved CO$_2$ (and organic carbon) is a major factor contributing to the observed mismatch between FCO$_2$ and CBR. The negative relationship between average tidal range and FCO$_2$ (Figure 6a) provides further evidence that the sites acting as net CO$_2$ sinks may have done so in response to tidal forcing. Lastly, the results of our wavelet coherence analysis support the role of tidal forcing on FCO$_2$, given the increase in power at the M2 period, especially for EES, AR, and FU (Figures 9b, 9c, and 9e). As discussed above, this tidal forcing has implications for blue carbon accounting, as air-water CO$_2$ exchange at sites with minimal tidal exchanges likely represents the combined effects of processes like anaerobic alkalinity production, calcification, or OC respiration. These “missing” carbon fluxes complicate traditional blue carbon accounting by challenging the assumption that soil OC burial constitutes a 1:1 removal of CO$_2$ from the atmosphere.

In conclusion, we report high rates of air-water CO$_2$ exchange over seagrass meadows, which may significantly alter the net carbon storage capacity of these “blue carbon” ecosystems. This study argues the need for a more comprehensive approach to future “blue carbon” assessments, which should consider organic carbon storage in the context of other carbon fluxes, including air-water CO$_2$ exchange. Future studies can build on this work by investigating the role of tidal and thermal forcing, which may affect CO$_2$ fluxes by enhancing (or suppressing) the turbulence responsible for air-water gas exchange, but may also transport excess CO$_2$ away from or to seagrass meadows. And, while the present study was limited to CO$_2$, many of the factors affecting air-sea CO$_2$ transfer are also applicable to other greenhouse gases including CH$_4$ and N$_2$O. There is also a clear need for direct CO$_2$ flux measurements in the southern hemisphere, of which none are presently available.
Data Availability Statement

Data are published openly at https://doi.org/10.6084/m9.figshare.12161478.v1 for BA, and 10.5281/zenodo.3372787 for EES (Barreras-Apodaca & Sánchez-Mejía, 2019). The remaining datasets for FU, FK, AR, and OES are available under previous publications Tokoro et al. (2014), Polsenære et al. (2012), and Ruggers et al. (2020).

References

